
ESc 101: Fundamentals of Computing

Lecture 14

Feb 1, 2010

Lecture 14 () ESc 101 Feb 1, 2010 1 / 20

Outline

1 Adding Large Integers

Lecture 14 () ESc 101 Feb 1, 2010 2 / 20

Data Structure for Negative Numbers

A number is stored, as usual, in an array of char, with one digit per
element.

The order is least significant digit first.

For storing the sign, the possibilities are:
I Use one element of the array to record the sign.
I Use a separate variable to store the sign.

Lecture 14 () ESc 101 Feb 1, 2010 3 / 20

Data Structure for Negative Numbers

A number is stored, as usual, in an array of char, with one digit per
element.

The order is least significant digit first.

For storing the sign, the possibilities are:
I Use one element of the array to record the sign.
I Use a separate variable to store the sign.

Lecture 14 () ESc 101 Feb 1, 2010 3 / 20

Data Structure for Negative Numbers

A number is stored, as usual, in an array of char, with one digit per
element.

The order is least significant digit first.

For storing the sign, the possibilities are:
I Use one element of the array to record the sign.
I Use a separate variable to store the sign.

Lecture 14 () ESc 101 Feb 1, 2010 3 / 20

Data Structure for Negative Numbers

A number is stored, as usual, in an array of char, with one digit per
element.

The order is least significant digit first.

For storing the sign, the possibilities are:
I Use one element of the array to record the sign.
I Use a separate variable to store the sign.

Lecture 14 () ESc 101 Feb 1, 2010 3 / 20

Storing Sign in Array

An obvious way is to store it as the last element of the array.

Adding two numbers will now require checking the signs of numbers
and then performing either addition or subtraction.

If one number is negative and other positive, we also need to check
which is larger and subtract accordingly.

Lecture 14 () ESc 101 Feb 1, 2010 4 / 20

Storing Sign in Array

An obvious way is to store it as the last element of the array.

Adding two numbers will now require checking the signs of numbers
and then performing either addition or subtraction.

If one number is negative and other positive, we also need to check
which is larger and subtract accordingly.

Lecture 14 () ESc 101 Feb 1, 2010 4 / 20

Storing Sign in Array

An obvious way is to store it as the last element of the array.

Adding two numbers will now require checking the signs of numbers
and then performing either addition or subtraction.

If one number is negative and other positive, we also need to check
which is larger and subtract accordingly.

Lecture 14 () ESc 101 Feb 1, 2010 4 / 20

Storing Sign Separately

The same process needs to be followed for adding two numbers.

To keep it simple, let us store the sign in the array.

Lecture 14 () ESc 101 Feb 1, 2010 5 / 20

Storing Sign Separately

The same process needs to be followed for adding two numbers.

To keep it simple, let us store the sign in the array.

Lecture 14 () ESc 101 Feb 1, 2010 5 / 20

Algorithm for Adding Numbers

Algorithm add_numbers(n, m)

{

1. If both are positive, then add directly.

2. If both are negative, remove the signs, add,

and then give the result negative sign.

3. Otherwise, remove the signs, and subtract the

smaller number from the larger one, and give

the result the sign of larger number.

}

Lecture 14 () ESc 101 Feb 1, 2010 6 / 20

A Better Data Structure

A number can have at most SIZE digits.

In other words, a number is between −10SIZE + 1 to +10SIZE − 1.

Consider these numbers modulo 2 ∗ 10SIZE:
I Numbers between 0 and 10SIZE − 1 remain the same.
I Number −1 becomes 2 ∗ 10SIZE − 1.
I Number −10SIZE + 1 becomes 2 ∗ 10SIZE − 10SIZE + 1 = 10SIZE + 1.
I All other negative numbers are in between 10SIZE + 1 and 2 ∗ 10SIZE− 1.

All numbers are now positive!

Number 10SIZE corresponds to −10SIZE but will never be input.

Lecture 14 () ESc 101 Feb 1, 2010 7 / 20

A Better Data Structure

A number can have at most SIZE digits.

In other words, a number is between −10SIZE + 1 to +10SIZE − 1.

Consider these numbers modulo 2 ∗ 10SIZE:
I Numbers between 0 and 10SIZE − 1 remain the same.
I Number −1 becomes 2 ∗ 10SIZE − 1.
I Number −10SIZE + 1 becomes 2 ∗ 10SIZE − 10SIZE + 1 = 10SIZE + 1.
I All other negative numbers are in between 10SIZE + 1 and 2 ∗ 10SIZE− 1.

All numbers are now positive!

Number 10SIZE corresponds to −10SIZE but will never be input.

Lecture 14 () ESc 101 Feb 1, 2010 7 / 20

A Better Data Structure

A number can have at most SIZE digits.

In other words, a number is between −10SIZE + 1 to +10SIZE − 1.

Consider these numbers modulo 2 ∗ 10SIZE:
I Numbers between 0 and 10SIZE − 1 remain the same.
I Number −1 becomes 2 ∗ 10SIZE − 1.
I Number −10SIZE + 1 becomes 2 ∗ 10SIZE − 10SIZE + 1 = 10SIZE + 1.
I All other negative numbers are in between 10SIZE + 1 and 2 ∗ 10SIZE− 1.

All numbers are now positive!

Number 10SIZE corresponds to −10SIZE but will never be input.

Lecture 14 () ESc 101 Feb 1, 2010 7 / 20

A Better Data Structure

A number can have at most SIZE digits.

In other words, a number is between −10SIZE + 1 to +10SIZE − 1.

Consider these numbers modulo 2 ∗ 10SIZE:
I Numbers between 0 and 10SIZE − 1 remain the same.
I Number −1 becomes 2 ∗ 10SIZE − 1.
I Number −10SIZE + 1 becomes 2 ∗ 10SIZE − 10SIZE + 1 = 10SIZE + 1.
I All other negative numbers are in between 10SIZE + 1 and 2 ∗ 10SIZE− 1.

All numbers are now positive!

Number 10SIZE corresponds to −10SIZE but will never be input.

Lecture 14 () ESc 101 Feb 1, 2010 7 / 20

A Better Data Structure

A number can have at most SIZE digits.

In other words, a number is between −10SIZE + 1 to +10SIZE − 1.

Consider these numbers modulo 2 ∗ 10SIZE:
I Numbers between 0 and 10SIZE − 1 remain the same.
I Number −1 becomes 2 ∗ 10SIZE − 1.
I Number −10SIZE + 1 becomes 2 ∗ 10SIZE − 10SIZE + 1 = 10SIZE + 1.
I All other negative numbers are in between 10SIZE + 1 and 2 ∗ 10SIZE− 1.

All numbers are now positive!

Number 10SIZE corresponds to −10SIZE but will never be input.

Lecture 14 () ESc 101 Feb 1, 2010 7 / 20

A Better Data Structure

A number can have at most SIZE digits.

In other words, a number is between −10SIZE + 1 to +10SIZE − 1.

Consider these numbers modulo 2 ∗ 10SIZE:
I Numbers between 0 and 10SIZE − 1 remain the same.
I Number −1 becomes 2 ∗ 10SIZE − 1.
I Number −10SIZE + 1 becomes 2 ∗ 10SIZE − 10SIZE + 1 = 10SIZE + 1.
I All other negative numbers are in between 10SIZE + 1 and 2 ∗ 10SIZE− 1.

All numbers are now positive!

Number 10SIZE corresponds to −10SIZE but will never be input.

Lecture 14 () ESc 101 Feb 1, 2010 7 / 20

A Better Data Structure

A number can have at most SIZE digits.

In other words, a number is between −10SIZE + 1 to +10SIZE − 1.

Consider these numbers modulo 2 ∗ 10SIZE:
I Numbers between 0 and 10SIZE − 1 remain the same.
I Number −1 becomes 2 ∗ 10SIZE − 1.
I Number −10SIZE + 1 becomes 2 ∗ 10SIZE − 10SIZE + 1 = 10SIZE + 1.
I All other negative numbers are in between 10SIZE + 1 and 2 ∗ 10SIZE− 1.

All numbers are now positive!

Number 10SIZE corresponds to −10SIZE but will never be input.

Lecture 14 () ESc 101 Feb 1, 2010 7 / 20

Adding Numbers

Numbers are added modulo 2 ∗ 10SIZE.

If the result is between 0 and 10SIZE− 1, the result is positive number.

If the number is between 10SIZE and 2 ∗ 10SIZE − 1, the result is
negative number.

We need to add only positive number now!

The addition needs to be done modulo 2 ∗ 10SIZE.

This is simpler than handling different cases as earlier.

Lecture 14 () ESc 101 Feb 1, 2010 8 / 20

Adding Numbers

Numbers are added modulo 2 ∗ 10SIZE.

If the result is between 0 and 10SIZE− 1, the result is positive number.

If the number is between 10SIZE and 2 ∗ 10SIZE − 1, the result is
negative number.

We need to add only positive number now!

The addition needs to be done modulo 2 ∗ 10SIZE.

This is simpler than handling different cases as earlier.

Lecture 14 () ESc 101 Feb 1, 2010 8 / 20

Adding Numbers

Numbers are added modulo 2 ∗ 10SIZE.

If the result is between 0 and 10SIZE− 1, the result is positive number.

If the number is between 10SIZE and 2 ∗ 10SIZE − 1, the result is
negative number.

We need to add only positive number now!

The addition needs to be done modulo 2 ∗ 10SIZE.

This is simpler than handling different cases as earlier.

Lecture 14 () ESc 101 Feb 1, 2010 8 / 20

Adding Numbers

Numbers are added modulo 2 ∗ 10SIZE.

If the result is between 0 and 10SIZE− 1, the result is positive number.

If the number is between 10SIZE and 2 ∗ 10SIZE − 1, the result is
negative number.

We need to add only positive number now!

The addition needs to be done modulo 2 ∗ 10SIZE.

This is simpler than handling different cases as earlier.

Lecture 14 () ESc 101 Feb 1, 2010 8 / 20

Adding Numbers

Numbers are added modulo 2 ∗ 10SIZE.

If the result is between 0 and 10SIZE− 1, the result is positive number.

If the number is between 10SIZE and 2 ∗ 10SIZE − 1, the result is
negative number.

We need to add only positive number now!

The addition needs to be done modulo 2 ∗ 10SIZE.

This is simpler than handling different cases as earlier.

Lecture 14 () ESc 101 Feb 1, 2010 8 / 20

Adding Numbers

Numbers are added modulo 2 ∗ 10SIZE.

If the result is between 0 and 10SIZE− 1, the result is positive number.

If the number is between 10SIZE and 2 ∗ 10SIZE − 1, the result is
negative number.

We need to add only positive number now!

The addition needs to be done modulo 2 ∗ 10SIZE.

This is simpler than handling different cases as earlier.

Lecture 14 () ESc 101 Feb 1, 2010 8 / 20

read number()

/* Reads a number with up to SIZE many digits.

* Stores the number modulo 2*10^SIZE with least significant

* digit first.

*/

int read_number(char number[])

{

char symbol; /* Stores current input symbol */

char temp[SIZE]; /* temporary storage for numbers */

int size; /* stores the number of digits in input */

Lecture 14 () ESc 101 Feb 1, 2010 9 / 20

read number()

printf("Input a number of at most %d digits: ", SIZE);

symbol = getchar(); /* read first symbol */

if (symbol == ‘-’) { /* negative number */

number[SIZE] = 1;

symbol = getchar(); /* read the first digit */

}

else /* positive number */

number[SIZE] = 0;

Lecture 14 () ESc 101 Feb 1, 2010 10 / 20

read number()

for (size = 0; 1; size++) {

if ((symbol < ’0’) || (symbol > ’9’)) /* not a digit */

break;

if (size == SIZE) { /* input too large */

printf("Input too large: number should be at most %d digits\n", SIZE);

return 0;

}

temp[size] = symbol - ’0’;

symbol = getchar(); /* read next symbol */

}

Lecture 14 () ESc 101 Feb 1, 2010 11 / 20

read number()

/* Store number in reverse order,

* leaving the sign in place

*/

int i;

for (i = 0; i < size; i++)

number[i] = temp[size-1-i];

for (i = size; i < SIZE; i++)

number[i] = 0;

/* Convert to modular representation */

number2modular(number);

return 1;

}

Lecture 14 () ESc 101 Feb 1, 2010 12 / 20

number2modular()

/* Converts the given number to a number modulo 2*10^SIZE. */

void number2modular(char number[])

{

int i;

if (number[SIZE] == 0) /* positive number */

return;

/* Subtract from 2*10^SIZE */

for (i = 0; number[i] == 0; i++); /* skip zeros */

if (i == SIZE) { /* number is -0 */

number[SIZE] = 0; /* Remove the -ve sign */

return;

}

void: no return value

Lecture 14 () ESc 101 Feb 1, 2010 13 / 20

number2modular()

/* Non-zero digit. Subtract from 10 */

number[i] = 10 - number[i];

/* Subtract remaining digits from 9 */

for (i++; i < SIZE; i++)

number[i] = 9 - number[i];

return;

}

Lecture 14 () ESc 101 Feb 1, 2010 14 / 20

add numbers()

void add_numbers(char num1[], char num2[], char num3[])

{

int carry; /* Stores the carry value */

for (i = 0, carry = 0; i <= SIZE; i++) {

num3[i] = num1[i] + num2[i] + carry;

if (num3[i] > 9) { /* new carry created */

num3[i] = num3[i] - 10;

carry = 1;

}

else /* no carry created */

carry = 0;

}

Lecture 14 () ESc 101 Feb 1, 2010 15 / 20

add numbers()

if (num3[SIZE] == 2) { /* sum too large */

num3[SIZE] = 0; /* go modulo 2*10^SIZE */

}

return;

}

Lecture 14 () ESc 101 Feb 1, 2010 16 / 20

output number()

/* Outputs the given number. It first converts the number

* from its representation modulo 2*10^SIZE to normal.

*/

int output number(char number[])

{

int i;

/* Convert to normal representation */

modular2number(number);

/* Skip the leading zeroes */

for (i = SIZE-1; i >= 0; i--)

if (number[i] > 0)

break;

Lecture 14 () ESc 101 Feb 1, 2010 17 / 20

output number()

if (i == 0) { /* the sum is zero! */

printf("The sum is: 0\n");

return;

}

/* Non-zero number */

printf("The sum is: ");

if (number[SIZE] == 1) /* negative number */

printf(’’-’’); /* output - sign */

for (; i >= 0; i--)

putchar(number[i]+’0’);

printf("\n");

return;

}

Lecture 14 () ESc 101 Feb 1, 2010 18 / 20

main()

/* Numbers are stored modulo 2*10^SIZE.

* Negative numbers are in the range 10^SIZE+1 to 2*10^SIZE-1.

* Positive numbers are in the range 0 to 10^SIZE-1.

* All the operations are done modulo 2*10^SIZE.

*/

main()

{

char number1[SIZE+1]; /* stores first number */

char number2[SIZE+1]; /* stores second number */

char number3[SIZE+1]; /* stores the result */

Lecture 14 () ESc 101 Feb 1, 2010 19 / 20

main()

/* Read first number */

if (read number(number1) == 0) /* error */

return;

/* Read second number */

if (read number(number2) == 0) /* error */

return;

/* Add the two numbers */

add_numbers(number1,number2,number3);

/* Output the result */

output_number(number3);

}

Lecture 14 () ESc 101 Feb 1, 2010 20 / 20

	Adding Large Integers

